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SUMMARY 

Multidimensional residual distribution schemes for the convectiowdiffusion equation are described. Compact 
upwind cell vertex schemes are used for the discretization of the convective term. For the diffusive term, two 
approaches are compared the classical finite element Galerkin formulation, which preserves the compactness of 
the stencil used for the convective part, and various residual-based approaches in which the diffusive term, 
evaluated after a reconstruction step, is upwinded along with the convective term. 
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1. INTRODUCTION 

The scalar convectiondiffusion equation with constant convection speed and viscosity represents a 
simp& scalar model for the Navier-Stokes equations of fluid flow. It incorporates both a convection 
term A . V u  and a diffusion term vAu which models viscous effects: 

a u -  
- + ~ * V U  = VAU. 
at 

Introducing the non-dimensional cell Peclet number Pe representing the ratio of convection effects 
over diffusion effects and defined as Pe = Ih /v ,  where h is a characteristic length of the space 
discretization, three regimes can be distinguished: 

(a) Pe ,< 1 where the flow is diffusion-dominated 
(b) 1 < Pe < 10 where convection and diffusion effects are both important 
(c) Pe > 10 where the flow is convection-dominated. 

Pe = 0 corresponds to pure diffusion and Pe = 00 corresponds to pure convection. The Peclet 
number plays the same role as the Reynolds number in fluid flows. Classically, in the finite volume 
framework and for Pe > 1, upwind differences are preferred for the discretization of the convective 
part of the equation and central differences are preferred for the diffusive terms. On unstructured 
meshes the latter is equivalent to the Galerkin finite element method and yields very accurate results 
for diffusion-dominated (low-Peclet-number) flows. In the cell vertex finite volume method of 
Morton et al.' the viscous flux balance is evaluated per cell and distributed along with the inviscid 
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flux balance using a Lax-Wendroff-type scheme, an approach which the authors claim to be more 
accurate than the Galerkin method and which is consistent with the residual distribution philosophy. 

In this paper both approaches are investigated in the framework of residual distribution schemes 
using linear triangular elements2 The following discretizations are compared. 

1. Mixed upwindjcentral discretization. The convective term is discretized using a linearity- 
preserving convection scheme and the diffusive term is discretized using the Galerkin finite 
element method. This has the advantages of being inexpensive and, most importantly, of 
keeping the stencil ~ompact .~  

2 .  Residual-based discretization. The diffusive term is treated as a source term and distributed 
with coefficients based on the convective term.4 This requires an extension of the stencil in 
order to recover the gradients at the nodes or on the edges of the cells and compute the balance 
of the viscous fluxes by integration. 

2. UPWIND RESIDUAL DISTRIBUTION SCHEMES FOR THE INHOMOGENEOUS 
CONVECTION EQUATION 

Upwind residual distribution schemes on compact stencils for the inhomogeneous convection 
equation are considered: 

au - 
- + I  at v u  + s = 0. 

These schemes, described in detail in References 2 and 5-8, are based on a continuous, piecewise 
linear (P1 finite element) representation of the solution on unstructured triangular meshes and use the 
same compact stencil as the Galerkin finite element method, which offers a number of valuable 
advantages in terms of computational cost, suitability for implicit iterative strategies and parallel 
implementation. The residual of 'fluctuation' $T is obtained by integrating this equation over a 
triangular cell T: 

In the residual distribution approach, fractions of 4T are distributed to the vertices of the cell, with 
scalar coefficients Pi' summing up to unity for consistency. After assembling contributions from all 
the cells, each nodal value can be updated as 

where Si represents the area of the median dual cell around node i .  Both linear and non-linear upwind 
distribution schemes on unstructured triangular meshes have been developed over the past years, with 
built-in properties such as positivity (9) and linearity preservation (99). The latter property can be 
defined as 

flT4T --+ 0 when $T = 4' + 4' --+ 0. ( 5 )  

In other words, the distribution coefficients must remain bounded. It has been shown' that on a 
regular mesh this implies the absence of cross-flow diffusion and hence second-order accuracy at 
steady state for the homogenous advection equation. Positivity, which guarantees that no spurious 
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oscillations are cxeated, can be proved in the homogeneous case (4' = 0). Assuming constant 
convection speed A. and linear variation in u over a triangular cell, the convective residual 4' may be 
expressed as 

4 = sTi . V U  = kiul + I$$ + kkui, 

where S, is the area of the cell and ki is called the inflow parameter, defined as ki = $2 . iii, 2i being 
the inward norfl"a1 opposite node i and scaled by the length of the edge; see Figure 1. One has 
si + ij + s k  = 0 and consequently ki + 4 + kk = 0. Using this notation, the updated scheme can be 
rewritten as 

(6)  
C 

u;+' = c c&, (7) 
t 

with C cI = 1 for consistency. A scheme is said to be positive if all the coefficient C, are positive. It 
has bden shown that only non-linear schemes can combine the properties of positivity and linearity 
preservation. Finally, an upwind distribution scheme (U) is such that 

/?: = 0 when ki < 0. (8) 

Since the kl sum up to zero, one has to consider only two cases, depicted in Figure 2: the one-targeted 
case (ki > 0,  4 < 0 and kk < 0) in which the whole residual is distributed to node i and the two-target 
case (ki > 0, I$ > 0 and kk < 0)  in which the residual is split between the two downstream nodes i 
andj. Examples of distribution schemes, including the non-linear positive streamwise invariant (PSI) 

and the shock-capturing streamline upwind PetrovGalerlun (SUPG) or streamline 
diffusion 

In the presence of a source term the PSI scheme can be extended in the following manner. In the 
one-target case the whole residual (4' + 4') is distributed to the downstream node. In the two-target 
case the whole residual (4' + 4') is distributed to the downstream node. In the two-target case 
(ki > 0 and I$ > 0, provisional updates are determined based on the discretization of 4' using the N 
scheme and the discretization of 4' using the LDA scheme: 

are given in Table I 

(9) 
4 s  4j = $(Uj - uk) - -4  . k. s $i = ki(ui - ~ k )  - 2 4  , 

kk kk 

This scheme is not linearity-preserving, since $T = 0 does not imply cbi = 4j = 0. However, 
applying the MinMod limiter function L(x, y), where L(x, y)  = i [ 1 + sgn(xy)]i [sgn(x) + sgnb)] 
x min(lxl, Irl), to 4i and 4 j3  

4: = 4i - q4i, -4j1, 4; = 4 j  - L(4j,  -4J, (10) 

Figure 1. Generic triangle and inward normals di Figure 2. One-target case (left- and two-target case (right) 
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Table I. Distribution coefficients pi for various distribution schemes 

Scheme 92 B YB Distribution coefficient pi 

Linear 

N (narrow) scheme J J  

Galerkin 

LDA (low-diffusion A) scheme J 

SUPG scheme 

Non-linear 

PSI scheme J J  

SUPG + AV (artificial viscosity) 
scheme 

J f  
max(0 k.) 

J p i G  

J MinMod(#) 

one obtains a linearity-preserving scheme, since 4i + 0 and 4j -+ 0 when 4T + 0, which 
Whermore reverts to the positive PSI scheme in the absence of a source term. 

3. DISCRETIZATIONS FOR THE CONVECTION-DIFFUSION EQUATION 

3. I .  Mixed upwindlcentral discretization 

In the present approach the convection term is discretized using an upwind (as defined in Section 2) 
linearity-preserving scheme, while the diffusion term is discretized using a central finite volume 
formulation of the integral equation on the dual mesh. Considering for instance the median dual cell 
Sj shown in Figure 3, one has 

For each triangle T the boundary asi n T is composed of two segments with outward-pointing 
normals ;Axt and Si$ such that 

-1  -2 1, 
next +next = -- 2 " i .  

Substituting into (1 l) ,  one has 

/ / s , vAudQ=-  C -Vu.i i i ,  V 

TER, 
(13) 
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Figure 3. Median dual cell S, and compact support n, of triangles meeting in i 

where Vu is constant per triangle and given by Vu = (x:=l ujGj)/2ST. It is straightforward to show 
that this discretiation is identical with that produced by the Galerkin method. Indeed, the finite 
element approximation of vAu at node i is obtained by multiplying by the test function oi with 
compact support a, and integrating by parts. One has 

o,vAu dR = fa o p V u  djicxt - / Voi  . vVu dR I I, 
The update scheme for the convection-dihion equation can then be written as 

Note that for a given triangle T the contributions to the three vertices due to the Galerkin formulation 
of the d i h i o n  term cancel out: 

- V vu  . (iii + iij + i i k )  = 0. 
2 

For pure diffusion the scheme is positive provided that the grid satisfies certain regularity conditions 
(e.g. Delaunay triangulation'? and the following time step restriction is made: 

Indeed, writing out the scheme explicitly in terms of the values of u in the surrounding nodes, we get 

Thus the coefficient of < is given by 

which is positive under the condition (15). The other coefficients cjJ+ are positive for geometric 
reasons. 
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3.2. Residual-based approach 

A residual-based discretization for the convection-diffusion equation (1) is now discussed. The 
cell residual 4T consists of the convection term d C ,  which is evaluated as usual by assuming linear 
variations in u over the cell, and the balance of the viscous fluxes 4D given by 

Assuming a constant gradent over T leads to a vanishing viscous residual @. Therefore a higher- 
order reconstruction and an extension of the computational stencil are necessary to recover Vu on the 
boundary aT. Two alternatives are considered. 

(a) Nodal gradients. The gradients are recovered at the nodes by an area-weighted average over 
R, : 

C STVUT 

C ,ST 
TEQ VU, = 

TEfl,  

Once the value of Vu is known at each vertex, 4D can be evaluated using the trapezoidal rule 
(piecewise linear interpolation) as 

(20) 
4 I> =--c v 3  v u , . i , ,  

2 , = I  

where i i, are the inner normals to the triangle introduced in Section 2. 
(b) Edge-based gradients. The gradients are recovered at the midpoint of each edge:* 

1 
v u ,  = -(VuT, 2 + VuT2), (21) 

where TI  and T, are the cells on either side of edge e.  The diffusion term is then evaluated as 

3 

e= I 
dD = v c v u ,  . ii;, 

where i is the node opposite edge e,  as shown in Figure 4. 

Figure 4. Evaluation of qjD using edge-based gradients 

A possibly more accurate formula would be Vu, = (ST,VUr, + S,; Vur)/(S, + Sr2), which reduces to (21) for regular grids 
such as considered in the present numerical investigations (Section 4). 
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Figure 5 .  Stencils used to estimate (a) nodal gradients and (b) mid-edge gradients 

Once $ J ~  has been evaluated by either (20) or (22), it can be distributed along with 4' using the 
residual distribution schemes described in Section 2, giving the update scheme 

Compared with the Galerkin method described in the previous section, this approach has the 
disadvantage of requiring a larger stencil, as shown in Figure 5. In addition, it does not provide a 
positive discretization in the limit of pure diffusion, as can be easily shown by considering a uniform 
flow aligned with one grid line direction of a regular grid, for which the distribution scheme is a 
single target for all triangles. 

4. NUMERICAL RESULTS 

4. I .  Shear layer/'at plate interaction 

The interaction of a shear layer with a flat plate upon which develops a bounday layer is computed. 
A uniform triangulation of the domain (x, y ) _ ~  [0, 112 is used, with equal spacing in both directions, 
Ax = Ay = $. The convection speed vector A is uniform, equal to 2ZX + $ ,  where Zx and ey indicate 
unit vectors in the directions x and y respectively. The diffusion coefficient v is taken equal to 
corresponding to a cell Peclet number Pe x 37. The solution is specified on all the boundaries as 

on x = 1 and 0 < y < 1, 
o n y = O a n d O < x G l ,  

o n x = O a n d O G y < l ,  
ony = 1 and 0 < x < 1. 

u = o  { 
u = l  [ 

The two approaches described previously are compared: the upwind f central discretization and the 
residual-based discretization. For the latter the reconstruction of the viscous residual is done using 
either nodal gradients or edge-based gradients. The complete residual is then upwinded using the 
MinMod scheme. The following computations are performed: 

(a) mixed upwind/central: PSI/Galerkin 
(b) residual MinMod" (with nodal gradients) 
(c) residual &Modb (with -edge-based gradients) 
(d) residual MinModa (with nodal gradients) on a fine mesh 221 x 221. 
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Figure 6. Shear layer/flat plate interaction: reference Figure 7. Shear layer/flat plate interaction: convergence 
solution histories 

The fine mesh solution is considered as a reference solution and is plotted in Figure 6. The 
convergence histories corresponding to forward Euler time stepping and CFL = 1-0 are plotted in 
Figure 7 and show the same trends, although it must be noted that at this value of the Courant number 
the mixed upwind/central scheme is at the limit of stability. A cut of the solutions across the shear 
layer (at x = 0.8) is made and shown in Figure 8. The solutions on the 61 x 61 mesh nearly all 
coincide and are all quite far from the reference solution, suggesting that the mesh is not fine enough 
to resolve the shear layer. All the solutions are perfectly monotone owing to the use of positive 
convection schemes (PSI, MinMod). A detailed cut shown in Figure 9 indicates that the residual- 
based approach is actually more accurate than the classical upwind/central approach, with a slight 
advantage to the formulation using edge-based gradients. However, the advantage in terms of 
accuracy is not decisive. 

0 . 2 5 0 5  0.33 0.67 1 
0.00 

u(2 = 0.8, y) 

0.4001- 
0.880 0.930 0.980 1 

n(2 = 0.8.y) 

30 

Figure 8. Shear layer/flat plate interaction: cut at x = 0.8 
Figure 9. Shear layer/plate interaction: cut at x = 0.8, 

close-up view 
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4.2. The Smith and Hutton problem 

This classical test case was proposed in 198 1 during a workshop on 'Numerical Representation of 
Advection'. A large number of methods were compared and the results reported by Smith and 
Hutton." The problem is characterized by a fairly complicated streamline pattern and steep gradients 
in the quantity being convected. Unlike in the previous test case, no boundary layers are present in the 
flow. The velocity field is specified analytically as 

i ( x ,y )  = 2y(l - 2)& - 2x(1 - J ) Z y  

on the domain (x,y) E [-1, 11 x [0, 11 and is depicted in Figure 10. On the outlet boundary 0, = 0 
and 0 < x < l), &U/i)y = 0 is imposed, either weakly by leaving u unspecified or strongly in the case 
where Vu is reconstructed at the nodes. The solution is imposed on all other boundaries as 

u(x, 0) = 1 + tanh[(2x + l)a] ony = 0 and -1 < x < 0, 
o n x = - l a n d O < y < l ,  

u(x,y)=l-tanha ony- l and  - l < x < l ,  I o n x = l a n d O < y < l ,  

where a is given the value 10. A structured grid with 41 x 21 points was chosen, since this seems to 
have been the most popular choice among the contributions compared in Reference 1 1. Three cases 
were selected from that workshop, namely v = and corresponding respectively to 

Y 

1.00 

0.76 

0.50 

0.25 

0.00 
-1.00 -0.50 0.00 0.50 1 .oo 

2 

Figure 10. Smith and Hutton problem: streamline pattern 

Table 11. Smith and Hutton problem: summary of minimum/maximum solution values 

Scheme 

Convection D i h i o n  Pe = 1, v = lo-' Pe = 100, v = lo-' Pe = lo5, v = 

Galerkin Galerkin 0 - m ,  2~0000 -04014, 24000 Not converged 
SUPG Galerkin o.oo00, 2@000 -0.0002, 24000 -0.0101, 2.01 16 
LDA Galerkin O-oooo, 24000 -0.Ooo6, 24000 -0.0249, 2.0101 
PSI Galerkin 0 . m .  2~oooo O~oooo, 2moo 0-oooo, 2.oooo 
SUPG + AV Galerkin o ~ m ,  24000 0-oooo, 24000 -0.oO01, 2.0002 

MinMod' Residual o . m ,  24000 O~oooo, 2~ooOo o ~ m ,  2~ooOo 
O~oooo. 24000 -04028, 24000 -0.0248, 24098 LDA' Residual 
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350 
5 

Figure 1 1 .  Smith and Hutton problem, v = lo-': (from top to bottom) PSI/Galerkin solution on 41 x 21 grid, reference 
solution on 121 x 61 grid and cut along outlet boundary with close-up of circled region 
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41 x 21 
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r z 
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Figure 12. Smith and Hutton problem, Y = (from top to bottom) PSI/Galerkin solution on 41 x 21 grid, reference 
solution on 121 x 61 grid and cut along outlet boundary with close-up of circled region 
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Figure 13. Smith and Hutton problem, v = lo-? (from top to bottom) PSI/Galerkin solution on 41 x 21 grid, reference 
solution on 121 x 61 grid and cut along outlet boundary with close-up of circled region 
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Pe = 1, 100 and 10’. The first case is diffision-dominated whereas the latter is convection-dominated. 
In the absence of an exact analytical solution to this problem, a fine grid solution (121 x 61) is 
selected in each case as the reference solution. 

The results are summarized in Table 11, in which the range [urnin, u,] is given in each case to 
indicate the presence or absence of oscillations. The following observations can be made. 

MULTIDIMENSIONAL UPWIND RESIDUAL DISTRIBUTION SCHEMES 

Pe = 1. This case is dominated by diffision. Convection and its discretization play almost no part. 
It is not surprising therefore that the solutions obtained using various convection schemes for the 
inviscid term and central differencing (Galerkin) for the viscous term fall neatly onto one another; see 
cut in Figure 11. The Galerkin method, corresponding to distribution coefficients fly = 5 can even 
be used for the convective term without affecting the stability or monotonicity of the solution. The 
residual-based approach (MinMod’ and LDA’) leads to slightly more accurate solutions than the 
mixed upwind/central discretization, especially near the origin (0 < x -= 0.1). This shows that the 
method can also be applied to very viscous flows. 

Pe = 100. This case is dominated by convection, but diffusion effects are important enough to 
damp oscillations that appear when a non-positive convection scheme is used. The solutions obtained 
using the residual-based approach are as accurate, if not more so, than the solutions obtained with the 
upwind/central approach, as observed from the close-up view of the cut shown in Figure 12. 

Pe = ld. This case is almost pure convection and the diffusion present in the solution is essentially 
due to the false dissipation of the convection schemes. The Galerkin method did not converge and 
solutions obtained using non-positive convection schemes (LDA, SUPG) are oscillatory; see Figure 
13. For this value of the Peclet number the diffusion is so small that no difference can be observed 
between the two approaches PSI/Galerkin and MinModa or LDA/Galerkin and LDAa. 

5. CONCLUSIONS 

Two approaches for discretizing the convection4iffusion equation have been compared. The first is 
based on the use of a multidimensional residual distribution scheme (PSI, LDA, SUPG, etc.) for the 
discretization of the convective term and on the use of the Galerkin discretization for the viscous 
term. The second approach is more original and more expensive than the first and consists of applying 
upwind residual distribution schemes to both the inviscid flux balance and the viscous flux balance, 
evaluated by reconstructing nodal gradients or edge-based gradients. This approach is slightly more 
accurate than the classical approach even for very low Peclet number flows, but the improvement on 
the whole does not justify the additional cost and extension of the stencil. 
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